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Abstract

This paper develops a Bayesian methodology for assessing the confidence in model prediction by comparing the model output with
experimental data when both are stochastic. The prior distribution of the response is first computed, which is then updated based on
experimental observation using Bayesian analysis to compute a validation metric. A model error estimation methodology is then
developed to include model form error, discretization error, stochastic analysis error (UQ error), input data error and output
measurement error. Sensitivity of the validation metric to various error components and model parameters is discussed. A numerical

example is presented to illustrate the proposed methodology.
© 2005 Published by Elsevier Ltd.
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1. Introduction

Complex natural phenomena are increasingly sought to
be modeled through sophisticated computational models,
with very few or no full-scale experiments, thus reducing
the time and cost of engineering development relying upon
the understanding of these phenomena. However, such
models incorporate many assumptions and approximations
and hence need to be subjected to rigorous, quantitative
verification and validation (V&V) before they can be
applied to practical problems with confidence.

There are a number of physical, statistical and model
uncertainties in the prediction apart from the various direct
sources of numerical error. A probabilistic approach to
V&V under uncertainty involves quantification of the
statistical distribution of model prediction and then
comparing it with experimental measurement that also
follows a statistical distribution. Note that this could also
be viewed as studying the joint distribution of the
experiment and model. Various methods are available to
carry out probabilistic analysis to quantify the uncertainty
in the model output, given the statistical distributions of
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the input variables, such as Monte Carlo simulation [1] or
response surface methods [2,3]. The choice of method
depends on the nature of model used for predicting the
output, and the needs with respect to accuracy and
efficiency.

Verification refers to the assessment of accuracy of the
solution with respect to known solutions, or by some other
means, such as a posteriori error estimation. This activity
helps to identify, quantify and reduce the errors in the
computational model [4,5]. Several finite element discreti-
zation error estimators have been developed in the
literature [6-8]. Error estimates for uncertainty quantifica-
tion methods (Monte Carlo and response surface methods)
are also available [2,5].

Validation involves comparison of model prediction with
experimental data [4]. The widely used method of
“graphical validation” or viewgraph-based judgment (i.e.,
by plotting graphs of prediction and observation) is
inadequate although it is better than a qualitative
comparison [9,10]. A rigorous quantitative model valida-
tion metric should include both prediction and measure-
ment errors, and other uncertainties. Several metrics have
been developed to include parametric uncertainty [11]. One
such metric normalizes the difference between model
predictions and experimental values and computes a
relative error norm for discrete and continuous domain
problems. Another metric includes the uncertainty in the
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experimental value due to limited data through statistical
distributions and classical hypothesis testing [12,13].

Two types of validation metrics are developed in this
paper, based on the Bayesian approach. The first metric
considers test data based on a simple fail/pass criterion,
while the second metric compares model prediction with
observed response measurement, both being continuous
variables. The second approach explicitly incorporates the
variability in the experimental data and the magnitude of
its deviation from the model prediction. Once the model is
validated, it may be calibrated to improve its predictive
capability. A prediction error estimation methodology is
developed for this purpose in this paper; this includes
model form error, discretization error, stochastic analysis
error (UQ error), input data error and output measurement
error. The overall error is a nonlinear combination of these
various errors. Sensitivity analysis of the validation metric
to different physical and statistical parameters of the model
output and measurement error variance can be very useful
for model improvement or calibration and resource
allocation. Section 2 develops the Bayesian validation
metrics, and Section 3 describes the proposed methodology
for model error estimation and sensitivity analysis of the
validation metric. An illustrative numerical example is
provided in Section 4.

2. Validation metric
2.1. Bayes factor

Consider two models (or hypotheses) M; and M;. Their
prior probabilities of acceptance are denoted by P(M,) and
P(M;). By Bayes’ rule, when an event/data is observed, the
relative posterior probabilities of two hypotheses are
obtained as [14,15]

P(M |observation)

P(M |observation)
[ P(observation|M;)| [ P(M;)
~ | P(observation| M j)] {P(M j)] '

(1)

The term in the first set of square brackets on the right-
hand side is called the “Bayes factor” [16]. If the Bayes
factor is greater than 1.0 then it can be inferred that the data
favors the model M; more than model M;. If only a single
model M is proposed, then the model could be either
accepted as correct or rejected as incorrect. Thus the Bayes
factor in Eq. (1) may also be written as P(observation|
M is correct)/ P(observation| M is not correct). When an
observation is made, then the Bayes factor estimates the
ratio of relative likelihoods of the null hypothesis (i.e., data
supports the proposed model) and alternate hypothesis (i.e.,
data does not support the proposed model). The Bayes
factor metric is further developed below for two situations:
(1) reliability model (2) response computation.

2.1.1. Validation with pass/fail test data

Let x¢ and x be the predicted failure probability and true
failure probability, respectively, of an engineering system.
The value x is predicted by model M. This can be
considered as a point null hypothesis (Hy: x = xg). To
estimate the Bayes factor in Eq. (1), we need to consider an
alternative hypothesis (H;: x#£x).

If n experiments are undertaken, and k failures (e.g.,
stress greater than an allowable value) are observed out of
n tests, then the probability of observing the data given that
the true probability is equal to x comes from a binomial
distribution as

P(k|x,n) = "Cpx*(1 — x)" . Q)

Under the null hypothesis, this probability, P(data|H :
X = Xp) can be exactly estimated by simply substituting x,
in Eq. (2). Assume that there is no prior information about
x under the alternative hypothesis. Therefore, a uniform
distribution in [0,1] is assumed for f(x|H), the prior
density under the alternative hypothesis [17]. Then the
Bayes factor is computed as

P(data|Hy : x = xq)

P(data|H : x##xp)

_ Pkl = xo)'" "

s Gkl — Xy (xlH ) dx

= (n+ DCIxk(1 — xo)" . (3)

It is easy to identify the above expression in Eq. (3) to be
the probability density function (PDF) of a beta distribu-
tion with parameters k + 1, n — k + 1. It is well known that
the posterior PDF of x follows the beta distribution, when
the prior PDF has uniform distribution. In more detail, if
the prior has a uniform PDF in [0,1] i.e., f(x) = 1, then the
posterior PDF is

f(x|data : n, k) = (n + 1) Cx*(1 — x)" %, 4)

Note that this result is the same as in Eq. (3), which is the
Bayes factor B(x) evaluated at the probability x (see Fig. 1).
Therefore, the Bayes factor can be viewed here as the
posterior density of x evaluated at the predicted value x.

The above result, that the Bayes factor is the posterior
PDF at the predicted value xy, is only for the case with
uniform prior and binomial pass/fail data. For tests
conducted in other situations, only a response quantity

B(xp) =
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Fig. 1. Posterior density function for the probability of failure.
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may be measured (such as deflection, strain, etc.), but the
specimen may not be loaded till failure. In such cases, it is
valuable to derive a more general expression for the Bayes
factor, by using prior and posterior PDF’s of the predicted
response.

2.1.2. Validation with response variable measurement

In Eq. (2), the probability of the data k for a given value
of x, i.e., P(k|x,n), is also the likelihood function of x, i.e.,
L(x), where the failure probability x is the parameter of the
binomial distribution. For a continuous distribution, the
likelihood function is proportional to the probability
density of data y given the parameter x, i.e., L(x) x
f(y|x) [18]. Consider x to be not the failure probability, but
some general response quantity, with density function f{x)
and x, the value predicted by the computational model
under consideration. Then the probability of observing the
data under the null hypothesis P(data|Hy : x = x) can be
obtained from L(xy) = e¢f(y|xo) where ¢ is a positive
constant [18]. Similarly, the probability of observing the
data under the alternative hypothesis P(data|H : x# xg)
can be obtained from [ L(x)g(x)dx or [ef(y|x)g(x)dx,
where ¢g(x) is the prior density of x under the alternative
hypothesis. Since no information on g(x) is likely to be
available, one possibility is to assume g(x) = f(x). Then,
using Eq. (1) and Bayes theorem, the Bayes factor is
computed as

P(data|Hy : x = xp) . L(xo)

P(datalH, : x#x0) [ L(x)f(x)dx

_ SO S
JfOfdx f) |-,

Thus, the Bayes factor simply becomes the ratio of
posterior to prior PDFs of the predicted response when
g(x) = f(x). This result probabilistically quantifies the
contribution to model validation of an experimental result
that agrees with a given model prediction. If g(x)#f(x),
then the Bayes factor is computed using Eq. (5) with g(x)
instead of f(x) in the denominator. Fig. 2 shows notional
posterior and prior densities of model prediction x. Once
again, B> 1 indicates data support for the model.

If xe 18 the true solution, x is the model output, and
y is the experimental observation, then the following

B(xo) =

)

S ~

!\ —

Prior density

Posterior density
B = hy/h,;

—

X

Fig. 2. Validation metric as a ratio of posterior and prior density values.

equations hold:

Xtrue = X + €preds (6d)

(6b)

where &,r0q is the model prediction error and &, is the
measurement error. If we hypothesize that there is no
prediction error, the observed value will simply be
¥ = X—é&exp. From this relation and a Gaussian experi-
mental error assumption, we obtain f(y|x)~N(x, aix ). The
likelihood function L(x) in Eq. (5) can be created using
f|x). If there is only one observed value of y, then
L(x) = f(y|x). If multiple data are observed, the likelihood
is constructed as a product of f(y|x) values evaluated at
each y. This can be used to test our hypothesis.

A Bayes factor less than unity denotes that gpreq is
significant and should not have been omitted and hence
there is a need for estimating the total prediction error. It
should be noted that the metric shown in Eq. (5) allows us
to use non-Gaussian experimental errors also. Even when
B>1, it is useful to quantify the prediction error, and to
examine whether contributions from different errors cancel
each other. Further the degree of confidence in the model
prediction can be measured from the posterior probability
of the null hypothesis being true, i.e., P(Hy|data) as B/(B +
1) assuming that the prior probability P(H() to be 0.5 in
the absence of any prior knowledge. The following section
presents methods for quantifying the errors and uncer-
tainty in model prediction.

Xtrue =) + Eexps

3. Error estimation

The total prediction error is a function of various error
components that can be broadly divided into numerical
solution errors and model form errors. Investigations on
error combination are rarely available. This paper pursues
a nonlinear combination method.

3.1. Numerical error components in simulation

Several components of numerical errors in model
prediction, such as data error, discretization error,
stochastic analysis error (or UQ error), and measurement
error are briefly discussed below.

3.1.1. Input data error (&)

The measurement error in the input variables will be
propagated to the prediction of the output. If the
relationship between input and output is given by
u=f(xy,x2,...%y), then the error in the prediction of
the output due to the measurement error in the input
variables may be approximated using a first-order sensi-
tivity analysis as

i=1

_5Xz' (7

X=X
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in which dx; is the measurement error in ith input random
variable x; and (0f/0x;)|,zis the first-order sensitivity
coefficient of the model output u with respect to the ith
input random variable x;. The measurement error in each
input variable has been commonly quantified as a random
variable with Gaussian distribution, with zero mean and a
known or assumed variance, based on the instrument
calibration.

3.1.2. Discretization error (gj)

Several methods to quantify the discretization error in
finite element analysis are available in the literature.
However, most of these methods do not quantify the
actual error; instead, they quantify some surrogate
measures to facilitate adaptive mesh refinement. The
Richardson extrapolation (RE) method has been found
to be suitable for model verification and validation, since it
comes closest to quantifying the actual discretization error
[19]. This method has been extended by the first author to
stochastic finite element analysis [20]. It should be noted
that RE requires that the model solution be asymptotically
convergent and the domain is discretized uniformly
(regular grid). The assumption of monotone truncation
error convergence is not valid for very coarse models
sometimes. In the RE method, the error due to grid size
(for a coarse mesh) is given by

AL
T —1 ®)

where the grid refinement ratio r = hy/hy, and f; and f; are
the solutions with coarse and fine meshes, respectively. The
order of convergence p can be obtained from the relation
p=1In(f5—f5/f, —f1)/In(r) where f3 is the solution with
the finest grid size, and r = hy/h; = h3/h,. Due to the input
variable uncertainties, the finite element solutions f; and f>
are stochastic. Therefore, based on Eq. (8), the discretiza-
tion error (&) is also a random variable.

&h

3.1.3. Uncertainty quantification error (&,,)

Errors in stochastic analysis are method-dependent, i.e.
sampling error occurs (&) in Monte Carlo methods and
truncation error (&g,) occurs in response surface methods
(either conventional or polynomial chaos-based). For
example, sampling error could be assumed to be a
Gaussian random variable with zero mean and variance
given by 6>/ N where N is the number of Monte Carlo runs
and ¢ is the original variance of the model output [21]. The
truncation error (g,) is simply the residual error in the
response surface.

In this paper, due to the use of response surface
techniques for uncertainty quantification, truncation error
is used to represent &,q. A polynomial chaos-based
response surface is used, which is found to have superior
convergence characteristics than conventional response
surface models [20]. The response surface is constructed
by approximating both the input and output random
variables through series expansions of independent stan-

dard random variables &;. For example, a normal random
variable can be expressed in terms of its parameters as
w+to& where ¢ is a standard normal variable. Similarly, a
lognormal random variable with parameters 4 and J can be
expressed as exp (4+9&). The output response surface is
expressed in terms of the input variables through a
polynomial chaos expansion as

n

SN annTa(E. &)

i=1ir=1

n
x=ao+ Y a Ti(&,)+

n i iy

J’_Zzzailizi_qu(éi]aéizaélg)+"'v ©

i1=1ip=1i3=1

where x is the output and I,(¢,...,¢;,) are multi-
dimensional Hermite polynomials of degree p. The design
points for the data used to construct the response surface
are chosen such that they are the roots of the Hermite
polynomial of the order p 4+ 1 where p is the order of the
response surface [2].

The series in Eq. (9) could be truncated to a finite
number of terms. Thus the accuracy of the stochastic
computational model depends on the order of the
expansion. The truncation error &g, in the response surface
of order p can be estimated by constructing additional
higher-order response surfaces (i.e., order p + 1 or p + 2),
and using the RE extrapolation method, similar to Eq. (8).

3.1.4. Output measurement error (&)

The measurement error in the output variable is a
separate error component, whereas the measurement error
in the input variables is compounded through propagation
in the prediction model. Output measurement error is
quantified commonly as a random variable with Gaussian
distribution, with zero mean and a known or assumed
variance.

3.2. Model form error (&,o4e1)

If multiple models are considered, Bayesian model
averaging (BMA) [22,23] may be used to reduce the model
form uncertainty and model errors, but not quantify them
explicitly. In some practical cases, only one model may be
available, in which case BMA may not be useful. If a single
model is employed, this paper makes use of the observed
data to express the overall prediction error through a
regression model consisting of the individual error compo-
nents. The residual of such a regression analysis should
include the model form error (after subtracting the
experimental error effects). From Eqgs. (6a) and (6b) and
by denoting &.,s as the difference between the data and
prediction, i.e., &ps = ¥ — X, we can obtain the following
relation:

Eobs =V — X = &Epred — &exp
= &num 1 €model — Eexp

:f(gha €uq» £d) + emodel — Eexp- (10)



1394 R. Rebba et al. | Reliability Engineering and System Safety 91 (2006) 1390-1397

In Eq. (10), overall numerical error &,,,, 1S a nonlinear
function of the error components ¢, £,q and &4. Therefore,
it is constructed as a response surface with respect to ey,
€uq> and &g, using a polynomial chaos expansion, similar to
Section 3.1.3. The quantity emodei—&exp 1S simply the
residual &.gqua Of such a response surface. Thus the
distribution of model error &;04e1 is quantified by knowing
the distributions of &.giquai and &exp. However in most
practical situations, the validation data is very limited.
From a single validation experiment, one has the numerical
values of prediction and observation, and estimates of the
numerical errors in prediction, but not the experimental
error. In other words, values f(en,&uq,€d), and eops are
available but the exact value for experimental error gy,
cannot be estimated. Only the distribution of e, is
available or assumed, if at all. If we have a sufficient
number of validation data, we can compute the difference
(6obs — f(en, 6uq> 64)) and add a randomly generated term
Eexp tO it each time to obtain an estimate of model form
eITOT &model- Since the sample size (number of observations
made) is limited, an empirical distribution for &y,04¢ cannot
be constructed with confidence. However, one can compute
the statistics like mean and standard deviation of model
error from a set of validation experiments. Bootstrapping
[24] (sampling with replacement) can be done on the given
data set to generate a large number of statistics for model
form error, thus obtaining the distributions for mean and
standard deviation of model form error. Bootstrapping
assumes that the data set in hand is representative of the
intended population and no prior assumptions are made
regarding distribution of the samples. Further the observa-
tions are assumed to be independent and sampling is purely
random.

3.3. Sensitivity analysis

The Bayesian validation metric given in Egs. (3) and (5)
depends explicitly on model output and uncertainties
arising from validation experiments like lack of sufficient
data points and random measurement errors, etc. Also, the
statistical and physical model parameters affect the model
output and hence a model may be accepted or rejected
based on our prior assumption in a Bayesian analysis.
Thus, there exists an implicit relation between the Bayes
factor and each of the above model parameters, and curves
may be fitted to depict this relation. The sensitivity of the
Bayes factor to these variables may be estimated from the
slopes (first-order sense) of such plots. For example, with
reference to Eq. (3), the uncertainty due to a limited
number of data points in a pass/fail type of test may be
quantified as ‘7,2\»0 = xo(1 — xp)/n. For particular known
values of k and x,, one can generate a plot of B(xg) versus
oio for different values of n, based on Eq. (3), as shown in
Fig. 3.

Similar relations between B(x() and ofexp, Ly, Oy, €tC In

Eq. (5) can be derived to be used in a sensitivity analysis. A

Bayes factor

0-T T T T 1
0 0.025 0.05 0.075 0.1

uncertainty in test data

Fig. 3. Relation between B(x,) and Jio.

numerical example is provided to illustrate the proposed
methodology.

4. Numerical example

The steady state heat transfer in a thin wire of length L,
with thermal conductivity k, convective heat coefficient f is
of interest. The temperature at midpoint of the wire needs
to be predicted. We assume (acknowledging model form
error) that this problem is essentially one dimensional and
that the solution can be obtained from the boundary value
problem

2
kST 4 BT = 0 (i
X

with known conditions 7(0) and 7(L), where Q(x) is the
heat source. Suppose k and f are assumed for the sake of
illustration to be random variables, normally distributed
with statistics N(5,1) and N(0.5,0.1), respectively. Also,
the heat source Q(x) = 25(2x — L)* with L = 4. The wire is
insulated at the ends, which are kept at zero temperature
re., T(0) = T(L) = 0. It is required to predict 7'(2.0).

The numerical solution 7(x) for Eq. (11) can be obtained
using a finite-difference scheme with discretization step size
h. Since k and f are random, the model prediction 7'(2.0) is
also random whose statistical distribution needs to be
estimated. Since each computation of 7'(2.0) using a finite-
difference scheme could be computationally expensive, a
response surface may be fitted to predict 7(2.0) as a
function of input random variables k and f. A polynomial
chaos-based response surface is used for this purpose, as
mentioned in Section 3.1.3 earlier. Thus the random
variables k and f are expressed as (5+¢;) and
(0.5+0.1&5), respectively, where &; and &, are standard
normal variables. The design points for the data used to
construct the response surface are chosen such that they are
the roots of Hermite polynomial of the order p + 1 where p
is the order of the response surface. The corresponding
values of k£ and f, with respect to these collocation points,
are then used in the numerical model to compute the
response 7°(2.0). The unknown coefficients of the stochastic
response surface are then computed using standard
regression techniques.

In this numerical example, a second-order response
surface in two variables is constructed for 7'(2.0) and with
step-size i = 1. The design points for k and f are selected at
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the collocation points obtained from the roots of third-
order Hermite polynomials. The response surface is

Tpred = T(2.0) = 17.102 — 3.003 ¢; — 0.698¢,
+0.4964 (&2 — 1)+ 0.0251(&3 — 1) + 0.237¢,&,,
(12)

where £; and &, are independent standard normal variables
and R?> =0.999. The PDF of Tprea can be generated by
simulating &; and &,, and is found to have a lognormal
distribution with mean 17.12 and variance 10.042. This is
the prior density to be considered in the Bayesian model
validation next (Fig. 4).

4.1. Validation

Suppose for given values of k and /3, the numerical model
predicted a temperature of 18.5°. A wire made of a material
with properties k and f having the same measured values as
input to the numerical model was tested three times
repeatedly to measure the temperature at location x = 2.

The measured temperature was different in each experi-
ment ie., 18.8°, 18.2° 18.9°. Assuming a Gaussian
experimental error with zero mean, the true experimental
value is assumed to be the mean of the three measurements,
i.e., 18.633° for the sake of illustration. Also, the
experimental error is assumed to have a variance aﬁexp
estimated from the three measurements, again for the sake
of illustration.

As described in Section 2.1.1, the likelihood function of
the prediction is proportional to a normal density with
mean 7(2.0) and variance o, == 0.1433. Also with the
knowledge of f(7(2.0)), the validation metric is evaluated at
T = 18.5°. Using Eq. (5), the validation metric B is found
to be 11.6 which is much greater than 1.0 indicating that
the data matches very well with the prediction. However,
one should be cautious in accepting this result since various
errors like discretization error, input data error, truncation
error and even model form error may be canceling each
other to produce a result that is close to the measured
value. Hence there is a need to estimate the various errors
explicitly, as described below.

4.2. Error estimation

The numerical model related to Eq. (11) was refined
using 2= 0.5 and 0.25 to estimate the convergence rate
p = 1.985=x2 as described in Section 3.1.2. The discretiza-
tion error ¢, based on the RE method was obtained as a
stochastic response surface in two variables as

en = 5.9725 — 1.1&; — 0.1918&, 4 0.1895(&% — 1)
+0.0057(¢2 — 1) + 0.0681¢,&,. (13)

The discretization error was found to have a lognormal
distribution with parameters A = 1.762, and ¢ = 0.1923 i.e.,
with mean 5.9725° and a standard deviation of 1.15. Due to
the use of the stochastic response surface, the uncertainty
quantification error &,q is estimated by the truncation error
&em 1.€., the residual error in the stochastic response surface
for the model response 7'(2.0), which was found to be a
Gaussian variable with zero mean and a standard deviation
of 0.2°. This is much smaller than the FEM discretization
error. The information on input data error &g was not
available, and &4 is assumed negligible in this example.
Neglecting &g, and &4 based on the above observations, the
numerical error &,,, in Eq. (10) is approximated by e&y.
Thus Eq. (10) reduces to

€obs = €h 1 Emodel — €exp (14)

In Eq. (14), the distributions of ¢, and e, are available
from the above discussion. Specific values of g, are
available from each test. The number of tests, and thus the
number of samples of ¢, 1s likely to be small in practical
problems. In this example, nine values of Tp.q (and hence
&p) are calculated at nine collocation point values of &; and
&> (using Egs. (12) and (13), respectively), as shown in
Table 1. Assume for the sake of illustration that nine
corresponding values of T (and hence ¢&,p,) are observed
from nine tests, also shown in Table 1. A bootstrap
resampling technique [24] (with replacement) can then be
applied to generate &,qe1, based on Eq. (14). Each time a
value for (gops—ép) is resampled from the nine values shown
in Table 1, a randomly generated value of &, is added to
it, and sample statistics of &yoqe (mean and standard
deviation) are calculated from nine such values in a
resample. (Note that each resample contains the same

Table 1
Sample points for model form error

&n Tpred Tobs Eobs Eobs—¢éh
5.824 16.597 16.794 0.197 —5.627
8.126 12.902 12.997 0.095 —8.031
5.824 15.642 15.920 0.278 —5.546
4.174 23.222 23.310 0.088 —4.086
5.824 17.653 17.442 —0.211 —6.035
8.126 13.526 13.488 —0.038 —8.164
4.174 21.350 21.181 —0.169 —4.343
8.126 12.327 12.173 —0.154 —8.28

4.174 25.394 25.301 —0.093 —4.267
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Table 2
Distributions of model error statistics

Parameter Mean Variance Type of distribution
Bepoder —6.03 0.293 Normal
Oenodel 1.6 0.066 Weibull

number of data points as the original sample, i.e., nine in
this case). The procedure is repeated and 10,000 values for
e g @nd p - are obtained, thus giving their distribu-
tions as shown in Table 2. This approach thus provides a
measure of the uncertainties in the statistical parameters of
model form error, since they are obtained by bootstrap
resampling.

In this example, the mean model error p, = was
observed to follow a normal distribution (mean —6.03,
see Table 2), and the standard deviation of model error
He, o0 Was observed to follow a Weibull distribution. The
numerical error has a mean value of 5.9° while the model
form error has a mean value of —6.03°.

Looking at these numerical results, the two errors appear
to have almost cancelled each other in Eq. (14), resulting in
a small overall observed error &,,; and hence a high Bayes
factor in Section 4.1, indicating an optimistic model
validation result. But the error quantification shows that
the prediction model has large numerical and model form
errors. Thus a model acceptance/rejection criterion based
on the overall &,,s alone can lead to misleading conclu-
sions, especially in other untested situations when the
numerical and model form errors might become additive.
This observation shows the importance of quantifying
various error components, in addition to simply comparing
prediction and observation.

Since the error components add up linearly in this
example, the relative first-order sensitivities of numerical,
model and experimental errors to Bayes factor will simply
be proportional to their respective standard deviations.
The first-order normalized sensitivities of the model
parameters k and f to Bayes factor in Eq. (5) are found
to be 0.978 and 0.208, respectively, at their corresponding
mean values. These values are computed by plotting the
relation B vs. k and B vs. f§ separately, and normalizing the
products of standard deviations and slopes evaluated at
their mean values.

5. Conclusion

V&V needs to quantify various errors under uncertainty
and effectively compare them with imprecisely measured
experimental data to assess the predictive capability of the
model. A Bayesian approach was proposed for model
validation in this paper, and developed for two situations.
The first case performs model assessment using a pass/fail
criterion and uses the Bayes factor as a metric. The second
case includes the uncertainty in the experimental data
explicitly and estimates the Bayes factor using prior and

posterior distributions of the model output. The overall
numerical error in prediction is expressed as a nonlinear
response surface in terms of several errors such as
discretization error, uncertainty quantification error and
input data error, and compared with the observed error to
estimate the statistics of the model form error. A boot-
strapping technique is used to estimate the model form
error from a limited number of experimental measure-
ments. The simple numerical example resulted in a linear
relation among various errors and the further work is
needed to demonstrate the methodology for a more
complex problem where the various errors are combined
in a nonlinear fashion. Also, the sensitivity analysis limited
to a first-order evaluation showed that the validation
metric is sensitive to the variance of each error component.
Similarly model parameters that have an insignificant effect
(small sensitivity) on Bayes factor can be omitted to reduce
model complexity.
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