

General considerations for the influence of mesh density in LS Dyna

B.Tech. (Hons.) Michael Fairchild Tecosim Ltd, Dipl.-Ing. Udo Jankowski, Dipl.-Ing. Manfred Sans, Tecosim GmbH

5th European LS-DYNA User Conference, Birmingham, May 2005

Agenda

- Tecosim-best partner for simulation
- Introduction
- FE Experiments with varied parameters
- Analysis of Results/ Conclusion
- Automatic Meshing Pro's and Con's
- Summary

- Company Founded 1992
- Strategic CAE Partner of Major OEM's and Suppliers
- Turnover € 7,1 Mio in 2004
- Currently 75 Employees at 5 European Locations
- State-of-the-Art IT Infrastructure
- Comprehensive liability insurance
- Quality Management System according to ISO 9001, UM 14001 and Customer Specific Requirements (FORD Q1 Award)
- Associated member of the FAT (Forschungsvereinigung Automobil Technik) research team for finite element coupling for crash calculation

Locations & References

100

Leonberg

Rüsselsheim		Audi AG Adam OPEL AG Claas Daimler Chrysler Daihatsu		AMG Autoliv Bayer AG Bentler Bertone
	÷	Fiat FORD General Motors	ł	Bosch/ Blaupunkt Degussa-Hüls AG Dvnamit Nobel
Kälp	÷	HONDA ISUZU KIA	ł	EADS Faurecia Getrag
KOIN	÷	John Deere Jaguar Landrover	ł	Hella KG Johnson Controls Karmann
	÷	Nissan PORSCHE AG Toyota	÷	Lear Magna Thyssenkrupp
			ł	TRW Automotive Mahle MAN
STATE AND				Mannesmann/Sachs

1 martin

- Siemens VDO
 - Wagon Automotive

Basildon (UK) Coventry (UK) Igenie Office • Wago Tokio (Japan)

14

- State-of-the-Art scalable NEC MPP Linux cluster (64 CPU) with short Turnaround Time for Full Car Crash Analysis
- 64 bit Numbercruncher (Itanium/Opteron) for Implicit codes
- Branches Interlinked by Mbit Leased Lines
- ENX Access
- Major CAE and CAD Systems
- Development of Methods, Routines and Templates

ENX[®]_

iet connecte

2

NEC

Explicit Codes

- LS-Dyna
- PAMCrash/PAMSafe
- Radioss
- Abaqus explicit

Implicit Codes

- Nastran, Abaqus
- Ansys, Mechanica

CFD Code

StarCD

Pre-/Postprocessor

- Ansa
- HyperWorks
- Animator
- Sofy
- Medina
- Patran

Optimisation

- OptiStruct
- HyperOpt
- HyperStudy
- I- Sight

MKS Codes

- Madymo
- Adams
- Motion solve

CAE Portfolio

Frontcrash

- Linear Parameter Optimization
- Non- Linear Parameter Optimization
- **Design Optimization**

NVH / Durability

Multi Body Systems <u>(MBS)</u>

<u>CFD</u>

Optimization

Any sufficiently advanced technology is indistinguishable from magic.

"Profiles of the future" (1961) by Arthur C. Clarke (2003)

Introduction

- Why do we simulate?
- Cost effective
- Fast
- Proven method

• We cannot test!

Introduction

How should a mesh look like?

Simple box crash experiment:

Box section 50 mm x 80 x 500mm, t= 1.0mm, mild steel

Varied parameters:

- average edge length 15/10/5/2,5mm
- mesh orientation
 0deg/ 25deg
- different mesh/ integration method: Belytschko-Tsay/ Fully Integration
- Varied number of spotwelds
- With and without mapping or stamping data
- Renumbering and move in space

Objective:

- Is the result depending on the element length?
- •Is the result depending on the element orientation?
- •How does mapping influence/stabalise the results?
- How do small changes in the input influence the results?

Analysis: comparison of Displacement 10mm meshing

Time [ms]

Analysis: comparison of Displacement 5mm meshing

Time [ms]

Analysis: comparison of Displacement 2.5mm meshing

Analysis: Comparison max. displacement

Compression is nearly independent from the element length in a range from 10mm to 2.5 mm for the same element orientation

Analysis: Comparison max. displacement

The max displacement difference for 0° mesh and 25° mesh is small for finer meshes and big for coarser meshes

Analysis: Influence on mesh translation and

reumbering

For 10 mm the variation is about 8mm where as the deviation for smaller elements sizes is about 3mm for the same element orientation

Analysis: Influence on results of very small elements.

For 1,25 mm the BT (typ2) element seems to be to weak. For smaller elements sizes, full integration seems to have better results.

Analysis: comparison max displacement variation

310 290 270 displ. (mm) - 10mm 250 5 mm 230 **— * –** 2.5 mm 210 190 170 150 0 deg, bi 0 deg, fi nesh bi nesh fi nesh fi nesh bi spotn. Fi nesh bi o deg, bi 0 deg, nesh nesh hesh fi angular mesh dd. spotn. Fi spotn. Ei o data 25 deg. 25 deg. Nesh hesh hesh hesh hesh bi spotn. Ei o data 25 deg. Add. spotn. Ei o data spotn. Ei o data 25 deg. Add. spotn. Ei o data spotn. Ei o data 0 deg. Add. spotn. Ei o data

variation for different mesh sizes

Analysis: Comparison of integration method

Calculation Time

Results

 Results for the displacement and the internal energy seem to be smooth and stable in a range from 15mm to 2,5 mm for orthogonal element orientation

 Different element orientation give different results for coarser meshes

 Finer mesh is not so sensitive for different element orientation, integration method, number of spotwelds, mapping, small changes in the input (renumbering, moving the model in space)

 Mapping tools are easy to use for Crash coupling. The influence of the mapping was getting smaller for smaller element sizes for the influenced zone was getting smaller and the crash mode was very stable in our example.

Conclusion

 If you know the collapse mode of a part you can use a coarse mesh which should be orthogonal in the collapse direction (so you can achieve "superconvergence")

 If you doesn't know the collapse mode of a part; Please use finer meshes

No one knows the exact collapse mode of all the parts in a vehicle!

 Meshing rules for orthogonal /Mapping/Integration schemes meshes are important for coarser meshes but not important for finer meshes.

• Creation of finer meshes can be automated by TEC ODM!

- What is TEC-ODM?
- What can TEC-ODM do?
- How can the development process benefit from TEC-ODM?
- What is the System requirement

Automatic Meshing Pro's and Con's

• What is TEC-ODM?

• Tec ODM (**O**ne **D**ay **M**eshing) is a automatic FE batch meshing Software for Body in White meshes for Crash and NVH analysis. Tec ODM is based on a set of 50 different explicit mesh enhancement algorithms which are implemented in iterative loops.

tec-odm¥2.0			
File Edit		Help	
Start	Reset	Pause	
busy			
GLOBAL_ELEMENT_SIZE		4.6	
SHORTEST_LENGTH		3.8	
timestep		.835e-007	
Q4_WARPAGE		15.0	
Q4_MIN_ANGLE		45.0	
Q4_MAX_ANGLE		135.0	
T3_MIN_ANGLE		20.0	
T3_MAX_ANGLE		130.0	
TOGGLE_LINES	√	1	
MAXCPU		1	

🖉 tec-odm ¥ 2.0		
File Edit		Help
Start	Reset	Pause
busy		
ahh92140.geo_fin001.005000.igs	ready	-
ahh92263_005_geo_fin001.igs	ready	
ahh92272_005_geo_fin001.igs	ready	
ahh92303.geo_fin001.008000.igs	ready	
ahh92937.geo_fin001.006000.igs	ready	
ahh92939.geo_fin001.005000.igs	ready	
ahh92941.geo_fin001.005000.igs	ready	
ahh92943.geo_fin001.005000.igs	ready	
ahh92956.geo_fin001.005000.igs	ready	
ahh92959.geo_fin001.005000.igs	ready	
ahh92973.geo_fin001.005000.igs	ready	
ahh92977.geo_fin001.006000.igs	ready	
ahh92984.geo_fin001.006000.igs	meshing 19%	
ahh93460.geo_fin001.006000.igs		
ahh93464.geo_fin001.005000.igs		

Automatic Meshing Pro's and Con's

• What can TEC-ODM do?

• Tec ODM creates FE shell element meshes on CAD surfaces considering different quality criteria. TEC ODM's output is a mesh with distinguished global element sizes (11 mm or smaller) and smallest element length up to 4.0 mm.

• How can the development Process benefit from TEC ODM?

• How can the development Process benefit from TEC ODM?

	Regular FE Process	TEC ODM Process	
Additional Software cost for a MPP license	0€	149.000 €	
Cost for an BIW FE Mesh outsourced from CAE supplier	40.000€	0 €	
Number of updates per Year per Platform	5	5	
Number of platforms @ car manufacturer	10	10	
Total cost for BIW FE mesh per year	2.000.000€	149.000 €	
Investment needed for additional Hardware eg. Linux Cluster with 192 Processors		€ 288.000	
Manpowerl inhouse cost for TEC ODM operation (50 days for 50 BIW FE Mesh update)		€ 30.000	
Total cost	2.000.000€	467.000 €	
Possible savings with TEC ODM per year		1.533.000 €	

Cost saving through CAE- Process Optimisation

Automatic Meshing Pro's and Con's

Manual Mesh

ODM mesh

	Number of elements	Number of elements		
complete model	804819	complete model	1922676	
Model size	ic actting higgs	w with TEC O	DM thorafora	
"Model Size	is getting bigge			
some invest	ment in numbei	rcrunching is	needed.	

Automatic Meshing Pro's and Con's

•Ways of using TEC ODM

3-6 mm

- TEC ODM automesh process is ready to use
- TEC ODM will result in bigger FE models
- ODM process will result in faster answers to engineering questions and reduced modelling cost
- TEC ODM has nearly no "human influence" in the modelling process
- Meshing engineer becomes a quality and process checker

Thank you!

• Any questions?